Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Low-temperature redetermination of trans-tetrabromidobis(dimethyl sulfide- κ S) platinum(IV)

Alfred Muller and Reinout Meijboom*
Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
Correspondence e-mail: meijboomr.sci@ufs.ac.za

Received 12 November 2007; accepted 13 November 2007
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{C})=0.004 \AA$; R factor $=0.019 ; w R$ factor $=0.048$; data-to-parameter ratio $=29.2$.

The octahedral molecule of the title compound, $\left[\mathrm{PtBr}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{2}\right]$, lies on an inversion centre $[\mathrm{Pt}-\mathrm{Br}=$ 2.4654 (4) and 2.4761 (4) $\AA ; \mathrm{Pt}-\mathrm{S}=2.3624$ (9) \AA] . A similar set of bond distances is predicted by density functional theory.

Related literature

For the original room-temperature structure, see: Skvortsov et al. (1994). For the isostructural chlorido analogue, see: Toffoli et al. (1987). For the iodido analogue, see: Janse van Rensburg et al. (2007). For background literature, see: Muller et al. (2006); Otto (2000); Otto et al. (2001); Roodt et al. (2003).

Experimental

Crystal data

$\left[\mathrm{PtBr}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{2}\right]$	$V=632.38(3) \AA^{3}$
$M_{r}=638.99$	$Z=2$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=7.1993(2) \AA$	$\mu=24.01 \mathrm{~mm}^{-1}$
$b=7.0922(2) \AA$	$T=100(2) \mathrm{K}$
$c=12.6033(3) \AA$	$0.14 \times 0.07 \times 0.06 \mathrm{~mm}$

$\beta=100.674(1)^{\circ}$
$0.14 \times 0.07 \times 0.06 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII diffractometer

12836 measured reflections 1577 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.048$
$S=1.25$
1577 reflections

1503 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$

54 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.60 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-2.31 \mathrm{e}^{\AA^{-3}}$

Table 1
Comparison of geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for trans- $\left[\operatorname{Pt} X_{4}(\mathrm{dms})_{2}\right]$

X	$\mathrm{Pt}-X 1$	$\mathrm{Pt}-X 2$	$\mathrm{Pt}-\mathrm{S}$	$X 1-\mathrm{Pt}-\mathrm{S}$	$X 2-\mathrm{Pt}-\mathrm{S}$	$X 1-\mathrm{Pt}-X 2$
Cl^{a}	$2.313(3)$	$2.319(33)$	$2.363(10)$	$95.68(5)$	$83.43(4)$	$90.42(5)$
Br^{b}	$2.475(1)$	$2.467(1)$	$2.364(2)$	$96.05(7)$	$83.75(6)$	$90.57(4)$
Br^{c}	$2.4654(4)$	$2.4761(4)$	$2.3624(9)$	$96.02(2)$	$83.48(2)$	$90.607(12)$
Br^{d}	2.558	2.558	2.440	96.88	83.30	89.89

Notes: (a) Toffoli et al. (1987); (b) Skvortsov et al. (1994); (c) this work, observed; (d) this work, calculated

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINTPlus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the South African National Research Foundation, the Research Fund of the University of the Free State and SASOL is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (SA NRF, GUN 2038915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2369).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Release 3.1b. Crystal Impact GbR, Bonn, Germany.
Bruker (2004). SADABS (Version 2004/1) and SAINT-Plus (Version 7.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Janse van Rensburg, J. M., Oskarsson, A. \& Roodt, A. (2007). Acta Cryst. C63. In the press.
Muller, A., Meijboom, R. \& Roodt, A. (2006). J. Organomet. Chem. 691, 5794 5801.

Otto, S. (2001). Acta Cryst. C57, 793-795
Otto, S., Roodt, A. \& Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.
Roodt, A., Otto, S. \& Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Skvortsov, N. K., Spevak, V. N., Lobadyuk, V. I., Titov, K. E., Konovalov, V. E. \& Bel'ski, V. K. (1994). Russ. J. Gen. Chem. 64, 1663-1667
Toffoli, P., Khodadad, P. \& Rodier, N. (1987). Acta Cryst. C43, 1704-1706.

supplementary materials

Low-temperature redetermination of trans-tetrabromidobis(dimethyl sulfide- $\kappa \boldsymbol{K}$)platinum(IV)

A. Muller and R. Meijboom

Comment

As part of an ongoing investigation (Muller et al., 2006; Roodt et al., 2003; Otto, 2001; Otto et al., 2000) into determining which factors govern a disordered packing mode in symmetrical square-planar complexes of Rh, Ir, Pd and Pt we set out to synthesize the starting compound trans- $\left[\mathrm{PtBr}_{2}(\mathrm{dms})_{2}\right]$, however we formed trans $-\left[\mathrm{PtBr}_{4}(\mathrm{dms})_{2}\right]$.

The current redetermination of the structure (Skvortsov et al., 1994) is accompanied by a DFT calculation to determine the optimum structure in the gas phase, similar to what we reported previously for square planar Rh complexes (Muller et al., 2006).

The title compound trans-[$\left.\mathrm{PtBr}_{4}(\mathrm{dms})_{2}\right]\left(\mathrm{dms}=\mathrm{SMe}_{2}\right)$, (I), crystallizes in the monoclinic space group $\mathrm{P} 2(1) / \mathrm{n}(Z=2)$ and lies on an inversion centre (Figure 1). Selected geometrical data are given in Table 2. The $\mathrm{Pt}-\mathrm{Br}$ distances of the current low temperature study are slightly smaller than the previously reported, room temperature, structure (Skvortsov et al., 1994; data extracted from the Cambridge Structural Database; Version 5.27, update of August 2006), as is to be expected. No short intermolecular contacts were observed. A packing diagram is given in Figure 2.

Geometry optimization of the title compound using Density Functional Theory (DFT) calculations with the observed parameters as a starting structure converged to similar geometry. A good agreement between the calculated and observed geometry (Table 3) was found (r.m.s. deviation of all non-H atoms $=0.1684 \AA$). The overlay of the calculated and experimental structures is shown in Figure 3.

The geometries of trans-[Pt $X_{4}\left(\mathrm{dms}_{2}\right](X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ which are isostructural are given in Table 3. The $\mathrm{Pt}-\mathrm{S}$ distances are about the same for $X=\mathrm{Cl}$ and $\mathrm{Br}, 2.36 \AA$. The $X — \mathrm{Pt}-X$ angles are close to 90° for all complexes and the $X — \mathrm{Pt}-\mathrm{S}$ angles are $5-7^{\circ}$ off the 'ideal' 90°. Recently (Janse van Rensburg et al., 2007) the iodo complex has been described as being suspended by $\mathrm{I} \cdots \mathrm{I}$ contacts, and we refer to their discussion of these contacts.

Experimental

The title compound was formed during an attempted synthesis of trans-[$\left.\mathrm{PtBr}_{2}(\mathrm{dms})_{2}\right] .\left[\mathrm{K}_{2} \mathrm{PtCl}_{4}\right](1.00 \mathrm{~g}, 2.41 \mathrm{mmol})$ was dissolved in water $(50 \mathrm{ml})$. To this 5 equivalents of $\operatorname{LiBr}(\mathrm{g}, \mathrm{mmol})$ was added. The solution was stirred for 30 min and an excess of dimethyl sulfide ($4.5 \mathrm{ml}, 60 \mathrm{mmol}$) was added and left to stir. After 3 h the complex was filtered off, washed with water and left to dry. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave red cuboids.

DFT calculations were performed at the B3LYP level with the LANL2DZ basis set for platinum and the 6-311 G(d) basis set for bromine, sulfur, carbon and hydrogen atoms, using the Gaussian03 software package. Minima were verified via frequency analysis of the stationary point.

supplementary materials

Refinement

The methyl protons were placed in geometrically idealized positions and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.5$, with torsion angles refined from the electron density.

The final difference Fourier map had a large peak near Pt1.

Figures

trans-tetrabromidobis(dimethyl sulfide-кS)platinum(IV)

Crystal data

$\left[\mathrm{PtBr}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{2}\right]$
$M_{r}=638.99$
Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2yn
$a=7.1993$ (2) \AA
$b=7.0922$ (2) \AA
$c=12.6033(3) \AA$
$\beta=100.674(1)^{\circ}$
$V=632.38(3) \AA^{3}$
$Z=2$
$F_{000}=572$
$D_{\mathrm{x}}=3.356 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 7741 reflections
$\theta=3.0-28.3^{\circ}$
$\mu=24.01 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Cuboid, red
$0.14 \times 0.07 \times 0.06 \mathrm{~mm}$

Data collection

Bruker X8 APEXII 4K Kappa CCD
1577 independent reflections
diffractometer
Monochromator: graphite
Detector resolution: 8.3 pixels mm^{-1}
$T=100(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.098, T_{\text {max }}=0.239$
12836 measured reflections
1503 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=28.3^{\circ}$
$\theta_{\text {min }}=3.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-8 \rightarrow 9$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.048$
$S=1.25$
1577 reflections
54 parameters

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0206 P)^{2}+0.9733 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.60 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.31 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 20 $\mathrm{s} /$ frame. A total of 2528 frames were collected with a frame width of 0.5° covering up to $\theta=28.3^{\circ}$ with 100% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Pt	0	0.5	0	$0.00571(7)$
Br 1	$0.12665(5)$	$0.42300(6)$	$-0.16361(3)$	$0.01208(10)$
Br 2	$0.26367(5)$	$0.32209(5)$	$0.10955(3)$	$0.01170(9)$
S	$0.14169(12)$	$0.80085(13)$	$0.02722(7)$	$0.00895(18)$
C 1	$0.2075(6)$	$0.8796(6)$	$-0.0964(3)$	$0.0152(8)$
H 1 A	0.2529	1.0099	-0.0878	0.023^{*}
H 1 B	0.0974	0.8733	-0.1551	0.023^{*}
H 1 C	0.308	0.7984	-0.1136	0.023^{*}
C 2	$0.3716(5)$	$0.7772(6)$	$0.1094(3)$	$0.0162(8)$
H 2 A	0.4487	0.6927	0.0737	0.024^{*}
H2B	0.3599	0.7246	0.1797	0.024^{*}
H2C	0.4323	0.9012	0.1196	0.024^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt	$0.00420(10)$	$0.00743(12)$	$0.00574(11)$	$0.00062(7)$	$0.00159(7)$	$0.00040(6)$
Br 1	$0.01282(18)$	$0.0146(2)$	$0.01001(18)$	$0.00212(15)$	$0.00527(14)$	$-0.00004(14)$
Br 2	$0.00882(18)$	$0.01303(19)$	$0.01265(18)$	$0.00292(14)$	$0.00047(14)$	$0.00183(13)$
S	$0.0078(4)$	$0.0087(4)$	$0.0109(4)$	$-0.0010(3)$	$0.0033(3)$	$-0.0007(3)$
C 1	$0.018(2)$	$0.015(2)$	$0.0149(19)$	$-0.0038(16)$	$0.0078(16)$	$0.0043(16)$
C 2	$0.0117(18)$	$0.018(2)$	$0.018(2)$	$-0.0045(16)$	$-0.0012(15)$	$-0.0021(16)$

Geometric parameters (\AA, ${ }^{\circ}$)

Pt -S	2.3624 (9)
$\mathrm{Pt}-\mathrm{S}^{\text {i }}$	2.3624 (9)
$\mathrm{Pt}-\mathrm{Br}^{1}{ }^{\text {i }}$	2.4654 (4)
$\mathrm{Pt}-\mathrm{Br} 1$	2.4654 (4)
$\mathrm{Pt}-\mathrm{Br} 2$	2.4761 (4)
$\mathrm{Pt}-\mathrm{Br} 2{ }^{\text {i }}$	2.4761 (4)
S-C2	1.790 (4)
$\mathrm{S}-\mathrm{Pt}-\mathrm{S}^{\mathrm{i}}$	180
$\mathrm{S}-\mathrm{Pt}-\mathrm{Br} 1^{\mathrm{i}}$	83.98 (2)
$\mathrm{S}-\mathrm{Pt}-\mathrm{Br}^{\mathrm{i}}{ }^{\text {i }}$	96.02 (2)
$\mathrm{S}-\mathrm{Pt}-\mathrm{Br} 1$	96.02 (2)
$\mathrm{S}-\mathrm{Pt}-\mathrm{Br} 1$	83.98 (2)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Pt}-\mathrm{Br} 1$	180
$\mathrm{S}-\mathrm{Pt}-\mathrm{Br} 2$	96.52 (2)
$\mathrm{S}-\mathrm{Pt}-\mathrm{Br} 2$	83.48 (2)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Pt}-\mathrm{Br} 2$	90.607 (12)
$\mathrm{Br} 1-\mathrm{Pt}-\mathrm{Br} 2$	89.393 (12)
$\mathrm{S}-\mathrm{Pt}-\mathrm{Br} 2^{\text {i }}$	83.48 (2)
$\mathrm{S}-\mathrm{Pt}-\mathrm{Br} 2^{\mathrm{i}}$	96.52 (2)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Pt}-\mathrm{Br} 2^{\mathrm{i}}$	89.393 (12)
$\mathrm{Br} 1-\mathrm{Pt}-\mathrm{Br}_{2}{ }^{\mathrm{i}}$	90.607 (12)
$\mathrm{Br} 2-\mathrm{Pt}-\mathrm{Br} 2^{\text {i }}$	180
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Pt}-\mathrm{S}-\mathrm{C} 2$	91.04 (15)
$\mathrm{Br} 1-\mathrm{Pt}-\mathrm{S}-\mathrm{C} 2$	-88.96 (15)
$\mathrm{Br} 2-\mathrm{Pt}-\mathrm{S}-\mathrm{C} 2$	1.11 (15)
Br 2 - $-\mathrm{Pt}-\mathrm{S}-\mathrm{C} 2$	-178.89 (15)

$\mathrm{S}-\mathrm{C} 1$	$1.799(4)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.98
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.98
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.98
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.98
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.98
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.98
$\mathrm{C} 2-\mathrm{S}-\mathrm{C} 1$	$99.6(2)$
$\mathrm{C} 2-\mathrm{S}-\mathrm{Pt}$	$109.11(15)$
$\mathrm{C} 1-\mathrm{S}-\mathrm{Pt}$	$109.30(14)$
$\mathrm{S}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{~S}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{~S}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{~S}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{~S}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{~S}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
Br 1 i-Pt-S-C1	$-161.04(15)$
$\mathrm{Br} 1-\mathrm{Pt}-\mathrm{S}-\mathrm{C} 1$	$18.96(15)$
$\mathrm{Br} 2-\mathrm{Pt}-\mathrm{S}-\mathrm{C} 1$	$109.04(15)$
$\mathrm{Br} 2 \mathrm{i}-\mathrm{Pt}-\mathrm{S}-\mathrm{C} 1$	$-70.96(15)$

Symmetry codes: (i) $-x,-y+1,-z$.

Table 1
Comparison of geometric parameters $\left(\AA,{ }^{\circ}\right)$ for trans-[Pt $\left.X_{4}(d m s)_{2}\right]$.
X
$\mathrm{Pt}-\mathrm{X} 1$
$\mathrm{Pt}-\mathrm{X} 2$
Pt-S
X1—Pt—S
X2-Pt-S
$\mathrm{X} 1-\mathrm{Pt}-\mathrm{X} 2$

sup-4

supplementary materials

$\mathrm{Cl}(\mathrm{i})$	$2.313(3)$	$2.319(33)$	$2.363(10)$	$95.68(5)$	$83.43(4)$	$90.42(5)$
Br (ii)	$2.475(1)$	$2.467(1)$	$2.364(2)$	$96.05(7)$	$83.75(6)$	$90.57(4)$
Br (iii)	$2.4654(4)$	$2.4761(4)$	$2.3624(9)$	$96.02(2)$	$83.48(2)$	$90.607(12)$
Br (iv)	2.558	2.558	2.440	96.88	83.30	89.89

(i) Toffoli et al. (1987); (ii) Skvortsov et al. (1994); (iii) this work, observed; (iv) this work, calculated.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

